Exercise 2.6. In case representing pairs as procedures wasn't mind-boggling enough, consider that, in a
language that can manipulate procedures, we can get by without numbers (at least insofar as nonnegative
integers are concerned) by implementing 0 and the operation of adding 1 as
(define zero (lambda (f) (lambda (x) x)))
(define (add-1 n)
(lambda (f) (lambda (x) (f ((n f) x)))))
This representation is known as Church numerals, after its inventor, Alonzo Church, the logician who
invented the calculus.
Define one and two directly (not in terms of zero and add-1). (Hint: Use substitution to evaluate
(add-1 zero)). Give a direct definition of the addition procedure + (not in terms of repeated
application of add-1).
Для ленивых вот ответ:
(define zero (lambda (f) (lambda (x) x)))
(define one (lambda (f) (lambda (x) (f x))))
(define two (lambda (f) (lambda (x) (f (f x)))))
kb
05.02.2012 21:59 c8541125
Recommended by:
@dorfe
Do you really want to delete ?